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Markov Chains

Summary:

This worksheet offers some simple tools to handle with Markov chains. It will be shown how to
compute the ergodic distribution and to generate random simulations.
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Introduction (with Example 1)

A stochastic process is a sequence of random vectors. If we study discrete time models this
sequence can be ordered by a time index k, taken to be integers in this worksheet. A stochastic

process {X, } is said to have the Markov property if for all T>1 and all k
Prob(xk+ 1\ Xpo Xp_ 1o oo o Xp )= Prob(xk+ l| Xk)

Assuming this property we call such a sequence a Markov chain which is characterized by the
following three objects.

1. There is a vector x which records the possible values of the state of the system; for example:

M
1]
W N =

2. There is a quadratic transition matrix P, which records the probabilities of moving from one
value of the state to another in one period; for example:

0.25 0.5 0.25
P:=108 01 0.1
04 02 04

3. There is a vector Tty recording the probabilities (initial distribution) of being in each state at

time k = 0; for example:

_— 1 11

0713 3 3
Be sure that the single probabilities sum up to 1. You may check this using the following
subroutine, which is helpful to control the input of a matrix P with many entries:

Validity<P, n0> = | nezeilen(P) - 1
for i00..n

one, < 1

n
[ T>
"O.K." if m =1|-(P-one=one)
> |
1:

"These are no probability measures!" otherwise

Validity<P, n0> ="0.K."
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[k
The probability of moving from state i to state j in k periods is | P >i i try for example:

/
k=2 i=0 =1 \Pk>i =025

Hence P is the transition matrix for Kk periods. What happens if you increase k step by step?

k=1
0.8 4
0.25 0.5 0.25
0.6+ "
P =08 01 0.1
0.4
04 02 04
0.2 4
04
Pk

Increasing the exponent k, the matrix P converges very quickly, showing the same distributions

in every row.

The unconditional probability distribution of x, (1:= 0..2) after k periods is:

ki=1
m O-Pk =(0.4833333 0.2666667 0.25) with the (unconditional) expectation:
o 1P x = (1.7666667 )
06 Unconditional distribution
> 04T
% Now rise k again. For high k this distribution
£
. K .
g, equals the rows in P . This means that the
02T .. .. . . .
initial distribution Tt , becomes meaningless if
time passes by. Verify this for different initial
: : : distributions.
0 1 2 3
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A distribution Ttis called stationary if it satisfies for all k

Prob <Xk> =Prob <Xk_ i > =T

that is, if the distribution remains unaltered with the passage of time. Because the unconditional
probability distributions evolve according to

Prob <Xk> =Prob <Xk_ i > ‘P

a stationary distribution must satisfy 1= Tt P which can be also expressed as the linear system
1-( P- I)=0. However, this equation is homogenous linear and has no unique solution. But we
know that Ttis fixed by the additional condition ZT[i= 1. A small program helpes to solve the

equation under this restriction:
T( P) = |nezeilen(P) - 1
<P - einheit(n + 1)
for iJ0..n
M inS 1
for iJ0..n
| 0 if i<n

| < 1 otherwise

. . T -1
"No unique solution!" on errort -1

Stationary distribution

0.6T
z 7 TI(P) = (0.4541485 03056769 0.2401747 )
Q,
02T
0 :1 '2 |3 Compare this distribution with the

unconditional distribution for many
transition periods k.
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. k .
If for all initial distributions Tt it is true that lim  T1,"P" converges all to the same Ttwhich
k= o

satisfies T-( P- I)=0, we say that the Markov chain is asymptotically stationary with a unique

invariant (i.e. ergodic) distribution.The following theorem can be used to show that a Markov
chain is asymptotically stationary:

k
Theorem: Let P a stochastic matrix with <Pi j> >0 for some value of k and all 1 and j. Then P has

unique stationary distribution, and the process is asymptotically stationary.

To prepare the random simulation of the outcome from a Markov chain use these programs:

rdmultinom(Tt) := | Tl T
nezeilen(T) - 1
r<rd(1)

p< T[O

z, <1 if 0<r<p

0

Zy 0 otherwise

for il01..n
z.1 if psr<p +TC

z« 0 otherwise

pep+T[i

z «1 if r=1
n

z
rdmarkov <k, P, TTO,X> = | nezeilen(P) - 1
M<O > « rdmultinom/ Tt 0>
\
for tO1..k
n
e ), F(M 1)
j=0
<t > // T\<i>T\
M! erdmultinom\\P J
MT'X
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Now we are ready to start a simulation:

k=50
_ 0 Click with your mouse on the red field and press the
F9-button to get another random selection!
time := 0..k
Simulated Markov Chain
3—— 0) 0) Q @ CaSasad) @ Q @
Simtime
[Savas) 2+ @ ® ® ® | 6O O ® @ P ¢ ¢ ¢ @ ®
1:0 O O G=JGJ CaY) O L O O O O O O 00 O O O Ca9)
0 10 20 30 40 50
time

Example 2:
We call a state i a "reflecting state" if Pi = 0. In this example all states are reflecting:

1
x:=|2 T[O::(l 0 0)
3

)
I
hn O
n © W
S WL W

Now iterate the unconditional probabilities by increasing k.

k=1

Unconditional distribution with the (unconditional) expectation:

k
TP x =(2.5)

probability
o
<
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The probabilities jump alternately between state x, and x, converging to the stationary

0
distribution:

n(P) =(0.3333333 0.3333333 0.3333333)

A simulation of this process shows that one single state never appears in succession.

k=50

_ 0 Click with your mouse on the red field and press the

F9-button to get another random selection!

time = 0..k
Simulated Markov Chain
3—— @ @ @ @ @ @ ), Q@ @ @ @ @ @ @ @ Q@ @ Q@ 0,
Simtime
[Savas) 2 O O O O O & O ® O ¢ O O
1$ O O O O ® O O O L O O O L O O O L O O O O L
0 10 20 30 40 50
time
Example 3:

We call a state x, an "absorbing state" if Pi = 1. In the following example this is state x, = 3:

S » W
—_

1
x:=|2 T[O::(l 0 0)
3
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Now iterate the unconditional probabilities by increasing k.

Unconditional distribution with the (unconditional) expectation:

k
P x =(1.7)

probability
o
<

After several steps this iteration converges to the stationary distribution:

m(P)=(0 0 1)

That means that in the long run we end in state x,=3. Simulations verify this result:

k=50
_ O  Click with your mouse on the red field and press the
F9-button to get another random selection!
time := 0..k
Simulated Markov Chain
31 e-e-2 ez o
Simtime
6o 2T
1‘6 ] ] ] ] ]
0 10 20 30 40 50

time
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Example 4:

Let P:=

S =
S W O

0 1
5 x =2 my:=(1 0 0)
1 3

There exists no unique stationary distribution:

T( P) = "No unique solution!"

But there are 3 different stationary distributions. You will detect them by iterating P :

1 0 0
P‘={02 03 05
0 0 1

Example 5:

Suppose that an individual earns m = 0, 1, 2 , 3 money units per period with probability Prob .., where

Prob 0= 25 Prob 1= 25 Prob 9= 25 Prob 3= 25

Assume that he consumes a quarter of his wealth each period. The transition law is approximated
by rounding the consumption (cons) to the nearest integer:

rund( cons) := wenn(cons - floor(cons)<.5, floor(cons),ceil(cons))
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Defining the possible states of wealth as
1:=0..12

X. =1
1

we obtain the following individual consumption function:

(. .
rund\xi .25> T

consumption

o
—_
[\S}
wot
T
(%)
ot
N
o)
\O
—_
(e
—_
J—
—
N

wealth

The transition matrix must be:

P:i= |ce.25
for 100..12
for jOO..12

Pi,jeProbO if 1- rund(i-c)=j
Pi1j<—Pr0b 1 if i+ 1-rund(i-c)=]
Pi jeProb o if 1+ 2 - rund(ic)=j

Pi1j<—Pr0b 3 if i+ 3 - rund(i-c)=j

Pi jeO otherwise

P

1
As an initial distribution of x we use for example T, = IER
0,i
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Let's check the validity of our model:

Validity<P, n0> ="0.K."

Iterate the transition matrix:

k=1

Transition probabilities for k periods

Pk

Do the same for the unconditional probabilities to approximate the stationary distribution:

k=1
Unconditional distribution

0.15 71 T T
> 0.1 _ o o
3 _ _
<
O
o
g

005

A . . HH

(=)
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with the (unconditional) expectation:

1P x =(5.8846154)
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Here follows the direct way to compute the stationary distribution:

Stationary distribution

0.3 717 T |
02 ] —
Z/ T> = =
2 (P,
S
a.
01F -
0 | I_||_|H | Hﬂm
0 5 10
X

At last we simulate the wealth of'this individual over time:

k=50

_ 0 Click with your mouse on the red field and press the
F9-button to get another random selection!

time := 0..k

Simulated Markov Chain

time

Try another probability distribution Prob , of income!
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