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Markov Chains

Summary:

This worksheet offers some simple tools to handle with Markov chains. It will be shown how to 
compute the ergodic distribution and to generate random simulations. 
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 Introduction (with Example 1)

A stochastic process is a sequence of random vectors. If we study discrete time models this 
sequence can be ordered by a time index k, taken to be integers in this worksheet. A stochastic 
process {xk} is said to have the Markov property if for all τ 1 and all k

Prob(xk 1 | xk, xk 1, ... ,xk τ ) = Prob(xk 1 | xk) 

Assuming this property we call such a sequence a Markov chain which is characterized by the 
following three objects.

1. There is a vector x which records the possible values of the state of the system; for example:

x
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2. There is a quadratic transition matrix Ρ, which records the probabilities of moving from one 
value of the state to another in one period; for example: 

Ρ
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3. There is a vector π 0 recording the probabilities (initial distribution) of being in each state at 

time k = 0; for example:

π 0
1
3

1
3

1
3

Be sure that the single probabilities sum up to 1. You may check this using the following 
subroutine, which is helpful to control the input of a matrix P with many entries:

validity Ρ π0, n zeilen Ρ( ) 1

onei 1

i 0 n..∈for

"O.K."

0

n

i

π 0
T

i
=

1 Ρ one. one( ).if

"These are no probability measures!" otherwise

validity Ρ π0, "O.K."=
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The probability of moving from state i to state j in k periods is Ρk

i j, ; try for example:

k 2 i 0 j 1 Ρk
i j, 0.225=

Hence Ρk is the transition matrix for k periods. What happens if you increase k step by step?

k 1

Ρk

Ρk
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=

Increasing the exponent k, the matrix Ρk converges very quickly, showing the same distributions 
in every row.

The unconditional probability distribution of xi  ( i 0 2.. ) after k periods is:

k 1

π 0 Ρk. 0.4833333 0.2666667 0.25( )= with the (unconditional) expectation:
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Unconditional distribution

x
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π 0 Ρk. x. 1.7666667( )=

Now rise k again. For high k this distribution 

equals the rows in Ρk. This means that the 
initial distribution π 0 becomes meaningless if 

time passes by. Verify this for different initial 
distributions.
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A distribution π is called stationary if it satisfies for all k

Prob xk Prob xk 1 π

that is, if the distribution remains unaltered with the passage of time. Because the unconditional 
probability distributions evolve according to 

Prob xk Prob xk 1 Ρ.

a stationary distribution must satisfy π π Ρ. , which can be also expressed as the linear system 
π Ρ I( ). 0. However, this equation is homogenous  linear and has no unique solution. But we 
know that π is fixed by the additional condition πi 1. A small program helpes to solve the 
equation under this restriction:

π Ρ( ) n zeilen Ρ( ) 1

Π Ρ einheit n 1( )

Π i n, 1

i 0 n..∈for

ι i 0 i n<if

ι i 1 otherwise

i 0 n..∈for

"No unique solution!" ι
T

Π 1.on error
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Stationary distribution

x

pr
ob

ab
ili

ty π Ρ( ) 0.4541485 0.3056769 0.2401747( )=

Compare this distribution with the 
unconditional distribution for many 
transition periods k.
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If for all initial distributions  π 0 it is true that

∞k
π 0 Ρk.lim  converges all to the same π which 

satisfies  π Ρ I( ). 0, we say that the Markov chain is asymptotically stationary with a unique 
invariant (i.e. ergodic) distribution.The following theorem can be used to show that a Markov 
chain is asymptotically stationary: 

Theorem: Let Ρ a stochastic matrix with Ρi j,
k 0>  for some value of k and all i and j. Then P has 

unique stationary distribution, and the process is asymptotically stationary.

To prepare the random simulation of the outcome from a Markov chain use these programs:

rdmultinom π( ) π π
T

n zeilen π( ) 1

r rnd 1( )

p π0

z0 1 0 r p<if

z0 0 otherwise

zi 1 p r p πi<if

zi 0 otherwise

p p πi

i 1 n..∈for

zn 1 r 1if

z

rdmarkov k Ρ, π 0, x, n zeilen Ρ( ) 1

M 0< > rdmultinom π 0

i

0

n

j

j Mj τ 1, 1.

=

M τ< > rdmultinom Ρ
T i< >T

τ 1 k..∈for

MT x.
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 Now we are ready to start a simulation: 

k 50

sim rdmarkov k Ρ, π 0, x, Click with your mouse on the red field and press the 
F9-button to get another random selection! ⇐

time 0 k..
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Simulated Markov Chain

simtime

time

Example 2: 

We call a state i a "reflecting state" if Ρi i, 0. In this example all states are reflecting: 

Ρ

0

.5

.5

.5

0

.5

.5

.5

0

x

1

2

3

π 0 1 0 0( )

Now iterate the unconditional probabilities by increasing k. 

k 1
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Unconditional distribution
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with the (unconditional) expectation:

π 0 Ρk. x. 2.5( )=
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The probabilities jump alternately between state x0 and x2 converging to the stationary 
distribution:
π Ρ( ) 0.3333333 0.3333333 0.3333333( )=

A simulation of this process shows that one single state never appears in succession.

k 50

sim rdmarkov k Ρ, π 0, x, Click with your mouse on the red field and press the 
F9-button to get another random selection! ⇐

time 0 k..
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Simulated Markov Chain
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Example 3:

We call a state xi an "absorbing state" if Ρi i, 1. In the following example this is state x2 = 3: 

Ρ
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π 0 1 0 0( )
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 Now iterate the unconditional probabilities by increasing k. 

k 1
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with the (unconditional) expectation:

π 0 Ρk. x. 1.7( )=

After several steps this iteration converges to the stationary distribution:

π Ρ( ) 0 0 1( )=

That means that in the long run we end in state x2 3. Simulations verify this result: 

k 50

sim rdmarkov k Ρ, π 0, x, ⇐ Click with your mouse on the red field and press the 
F9-button to get another random selection! 

time 0 k..
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Example 4:

Let Ρ

1
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π 0 1 0 0( )

There exists no unique stationary distribution:

π Ρ( ) "No unique solution!"=

But there are 3 different stationary distributions. You will detect them by iterating Ρk:

k 1

Ρk

Ρk
1

0.2

0

0

0.3

0

0

0.5

1

=

Example 5:

Suppose that an individual earns m = 0, 1, 2 , 3 money units per period with probability Prob m where

Prob 0 .25 Prob 1 .25 Prob 2 .25 Prob 3 .25

Assume that he consumes a quarter of his wealth each period. The transition law is approximated 
by rounding the consumption (cons) to the nearest integer: 

rund cons( ) wenn cons floor cons( ) .5< floor cons( ), ceil cons( ),( )
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 Defining the possible states of wealth as

i 0 12..

xi i

we obtain the following individual consumption function:

0 1 2 3 4 5 6 7 8 9 10 11 12

1
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4

wealth

co
ns

um
pt

io
n

rund xi .25.

xi

The transition matrix must be:

Ρ c .25

Ρi j, Prob 0 i rund i c.( ) jif

Ρi j, Prob 1 i 1 rund i c.( ) jif

Ρi j, Prob 2 i 2 rund i c.( ) jif

Ρi j, Prob 3 i 3 rund i c.( ) jif

Ρi j, 0 otherwise

j 0 12..∈for

i 0 12..∈for

Ρ

As an initial distribution of x we use for example π 00 i,

1
13

.  
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Let's check the validity of our model:

validity Ρ π0, "O.K."=

Iterate the transition matrix:

k 1

Transition probabilities for k periods

Ρk

Do the same for the unconditional probabilities to approximate the stationary distribution: 

k 1
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Unconditional distribution

x

pr
ob

ab
ili

ty with the (unconditional) expectation:

π 0 Ρk. x. 5.8846154( )=
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Here follows the direct way to compute the stationary distribution:
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Stationary distribution
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π Ρ( )( )T i

xi

At last we simulate the wealth of this individual over time:

k 50

sim rdmarkov k Ρ, π 0, x, Click with your mouse on the red field and press the 
F9-button to get another random selection! ⇐

time 0 k..
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Try another probability distribution Prob m of income!
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