

© Prof. Dr. Andreas Thiemer, 2001

A Simple Exchange Economy with Complex Dynamics

(Revision: April 2002)

Summary:

Mukherji (1999) shows that a standard discrete tatonnement process within the context of a very simple exchange economy (two goods, two persons with Cobb-Douglas utility functions) exhibits complex dynamics of the price adjustment. This worksheet gives you the numerical tools to explore the phenomenon of period doubling bifurcation and chaos in this model.

1. Important definitions

A, B: individuals

p: price of good x relative to good y

p_E: equilibrium price

 p_x, p_y : absolute prices of x and y

u A, u B: utility of individual A and B

x, y: quantities of goods x₀,y₀: endowments of goods

Z: excess demand of good x

2. Basic assumptions

The preferences of individual A are given by:

$$u_A(x,y,\alpha) := x^{\alpha} \cdot y^{1-\alpha}$$
 with $0 < \alpha < 1$

The preferences of individual B are given by:

$$u_B(x,y,\beta) := x^{\beta} \cdot y^{1-\beta}$$
 with $0 < \beta < 1$

We define the price of good y as a numeraire:

$$p_{y}=1$$

Thus the relative price is written as:

$$p = \frac{p_X}{p_Y} = p_X$$

Individual A possesses the endowment $(x_0, 0)$ and B has the endowment $(0, y_0)$. Therefore, the budget constraints are

$$x_0 \cdot p \ge x \cdot p + y$$
 for individual A

$$y_0 \ge x \cdot p + y$$
 for individual B

3. The exchange equilibrium

With these budget constraints the **first order conditions of utility maximization** yield the demand functions for good x of individual A and B:

$$x_A(p,\alpha,x_o) := \frac{d}{dx}u_A(x,x_o\cdot p - x\cdot p,\alpha)$$
 auflösen, $x \to \alpha \cdot x_o$

$$x_B(p,\beta,y_o) := \frac{d}{dx}u_B(x,y_o - x \cdot p,\beta)$$
 auflösen, $x \to \beta \cdot \frac{y_o}{p}$

Now we summarize the demand behaviour by the excess demand function $Z(\cdot)$ for good x:

$$Z(p,\beta,\alpha,x_{o},y_{o}) := (x_{B}(p,\beta,y_{o}) + x_{A}(p,\alpha,x_{o}) - x_{o}) \Rightarrow \beta \cdot \frac{y_{o}}{p} + \alpha \cdot x_{o} - x_{o}$$

The market is in equilibrium if $Z(\cdot) = 0$. Hence the unique **equilibrium price** is determined by:

$$p_{E}(\beta, \alpha, x_{O}, y_{O}) := Z(p, \beta, \alpha, x_{O}, y_{O}) \text{ auflösen}, p \rightarrow -\beta \cdot \frac{y_{O}}{\left[x_{O} \cdot (-1 + \alpha)\right]}$$

4. Introducing adjustment dynamics

Consider the standard adjustment on prices in disequilibrium (the "tatonnement")

$$p_{i+1} = p_i + \gamma \cdot Z(p_i, \beta, \alpha, x_0, y_0)$$

where $\gamma > 0$ is some constant **speed of adjustment**. We can rewrite this equation as an iterated map:

$$f(p) := \left(p + \gamma \cdot Z(p, \beta, \alpha, x_0, y_0)\right) \Rightarrow p + \gamma \cdot \left(\beta \cdot \frac{y_0}{p} + \alpha \cdot x_0 - x_0\right)$$

First order conditon gives:

$$\frac{d}{dp} f(p) \text{ auflösen, } p \Rightarrow \begin{bmatrix} \left(\gamma \cdot \beta \cdot y_{o} \right)^{\left(\frac{1}{2}\right)} \\ -\left(\gamma \cdot \beta \cdot y_{o} \right)^{\left(\frac{1}{2}\right)} \end{bmatrix}$$

Insert the positive solution into the **second order condition**:

$$\frac{d^{2}}{d p^{2}} f(p) \text{ ersetzen}, p = \sqrt{\gamma \cdot \beta \cdot y_{o}} \Rightarrow 2 \cdot \gamma \cdot \beta \cdot \frac{y_{o}}{\left(\gamma \cdot \beta \cdot y_{o}\right)^{\left(\frac{3}{2}\right)}}$$

Because the second derivate becomes positive we know that f(p) attains a minimum value at

$$p' = \sqrt{\gamma \cdot \beta \cdot y_0}$$

given by

$$f\left(\sqrt{\gamma \cdot \beta \cdot y_{o}}\right) \text{ vereinfachen } \Rightarrow \gamma \cdot \frac{\left[2 \cdot \beta \cdot y_{o} - x_{o} \cdot \left(\gamma \cdot \beta \cdot y_{o}\right)^{\left(\frac{1}{2}\right)} + \alpha \cdot x_{o} \cdot \left(\gamma \cdot \beta \cdot y_{o}\right)^{\left(\frac{1}{2}\right)}\right]}{\left(\gamma \cdot \beta \cdot y_{o}\right)^{\left(\frac{1}{2}\right)}}$$

... or more simplified (by hand and not by *Mathcad*):

$$f(p')=2\cdot\sqrt{\gamma\cdot\beta\cdot y_0}-\gamma\cdot(1-\alpha)\cdot x_0$$

In order to guarantee positive prices f(p')>0 must hold. Defining

$$K = \frac{\gamma \cdot \left[(1 - \alpha) \cdot x_{0} \right]^{2}}{\beta \cdot y_{0}}$$

this is ensured if K < 4.

5. Some properties of the adjustment dynamics

For the proofs of the following cited claims, see Mukherij (1999).

Claim 2: $K < 2 \Rightarrow p_E$ is locally stable for the process f(p).

Claim 3: For 2<K<2.5 there exists a stable 2-cycle.

Let K_n denote the critical value of K where a 2^n cycle is born; then $K_1 := 2$ and $K_2 := 2.5$.

Using the Feigenbaum constant $F_{const} := 4.6692016091029$ the value of $\kappa = \lim_{n \to \infty} K_n$ can be approximated by:

$$\kappa := \frac{F_{\text{const}} \cdot K_2 - K_1}{F_{\text{const}} - 1} \Rightarrow \kappa = 2.636$$

Claim 4: For $K \in \Delta = (3.0, 3.6)$ the map f(p) exhibits topological chaos.

Claim 5: For K = 25/9, the map f(p) exhibits ergodic chaos; in addition there exists $K \in \Delta$ such that f(p) exhibits ergodic chaos.

6. Numerical Explorations

To explore the behaviour of the attractors for different values of K, Mukherji (1999, p.745) fixes the values of all parameters except the adjustment coefficient γ with

$$\beta \cdot y_0 = 1$$
 and $(1 - \alpha) \cdot x_0 = 6$

so that $K=36.\gamma$. Then the iterated map takes the particular form:

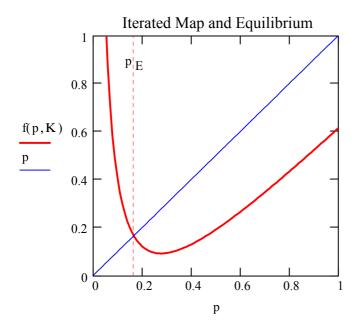
$$f(p,K) := p + \left(\frac{1}{p} - 6\right) \frac{K}{36}$$

Notice, that under these parameter restrictions the value of the equilibrium price is independent from K:

$$p_E := f(p, K) = p \text{ auflösen}, p \rightarrow \frac{1}{6}$$

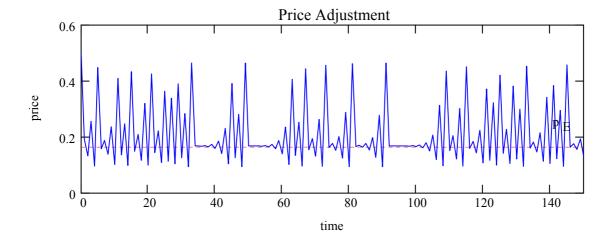
Choosing a numerical value for K, the iterated map is drawn in the following figure:

$$K := \frac{25}{9}$$
 $p_{max} := 1$ $p := 0,.01...p_{max}$

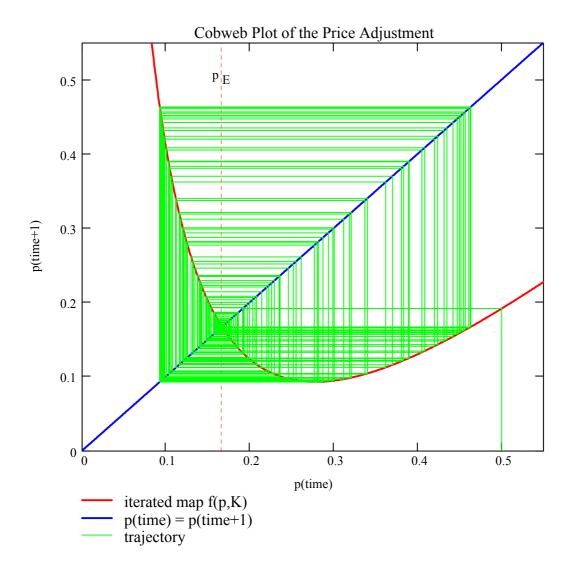


Given an initial value $\,p_0^{}$ of the first price offer and using the K-value from above, the adjustment process is computed for T $_{max}^{}$ periods .

$$p_0 := .5$$
 $T_{max} := 150$ $i := 0... T_{max}$ $p_{i+1} := f(p_i, K)$



This adjustment process may be also presented by a cobweb plot.



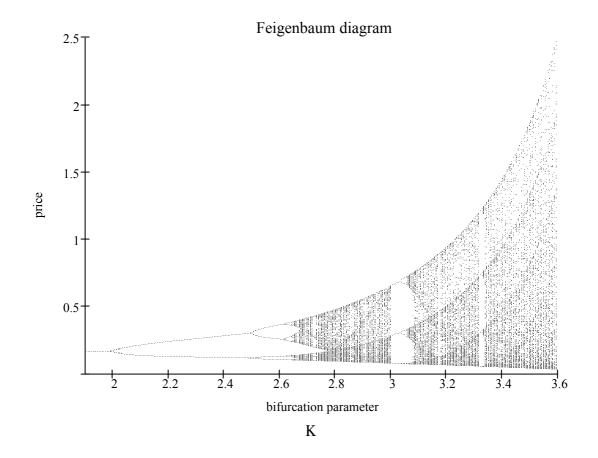
Observe the bifurcations by plotting the **Feigenbaum diagram** and the **Lyapunov exponent**. Use these figures to choose K such that you obtain stable cycles of different periodicity or irregular cycles of p.

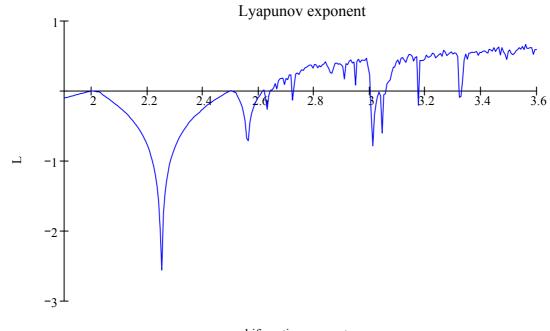
Resolution of graph: RES := 3 (1,2,...,10)

Range of plotted values: $K_{bottom} := 1.9$ $K_{top} := 3.6$

 $p_{bottom} = 0$ $p_{top} = 2.5$

Þ





bifurcation parameter

K

Note: Positive values of the Lyapunov exponent indicate chaotic behaviour of p!

Literature:

Anjan Mukherji: A Simple Example of Complex Dynamics. In: Economic Theory, vol.14 (1999), 741 - 749.