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Summary:

Mukherji (1999) shows that a standard discrete tatonnement process within the context of a very
simple exchange economy (two goods, two persons with Cobb-Douglas utility functions) exhibits
complex dynamics of the price adjustment. This worksheet gives you the numerical tools to explore
the phenomenon of period doubling bifurcation and chaos in this model.
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1. Important definitions

A, B: mdividuals
p: price of good x relative to good y
PE: equilibrium price

Px:Py: absolute prices of x and y
u A up: utility of individual A and B

X, V: quantities of goods
X 51Y o: endowments of goods

Z: excess demand of good x

2. Basic assumptions

The preferences of individual A are given by:

ua(Xx,y,d =x2- I-o with O<a<l1
AXy,a) y

The preferences of individual B are given by:
ug(x,y,p):= xB-yl_[3 with  0<B<I
We define the price of good y as a numeraire:
py=1

Thus the relative price is written as:

Px
p=—=p
py

Individual A possesses the endowment (x ,0) and B has the endowment (0,y ;). Therefore, the

budget constraints are

X op2xp+y  forindividual A

Yo2XPpty for individual B
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3. The exchange equilibrium
With these budget constraints the first order conditions of utility maximization yield the

demand functions for good x of individual A and B:

XA<p,0( ,X0> = %uA<X'Xo'P_ x-p,a> auflosen,x — ax,

y
/ yvood ooy o . Lol
XB\P1|31YO/- quB\X’yo Xp,[3> auflésen, x B .

Now we summarize the demand behaviour by the excess demand function Z (-) for good x:

y
/ = f \ / % a
Z\p,B,aaXan0> ' \XB<p’B1YO/+XA\p’a’XO>_XO>9[3 p +GX0_XO

The market is in equilibrium if Z(-) = 0. Hence the unique equilibrium price is determined by:

Yo
[xdﬁl+aﬂ

pE<[3,a,x0,y0> ::Z<p,|3,cx,x0,y0> auflosen,p —> -3

4. Introducing adjustment dynamics

Consider the standard adjustment on prices in disequilibrium (the "tatonnement")

P =P+ VZ <pi’|3’a 'Xo’y0>

where y>0 is some constant speed of adjustment We can rewrite this equation as an iterated map:

y
f(p) = <P+V'Z<P,I3,G,Xo,y0>>9p+y-\B-?o+a-x0—xO

First order conditon gives:

1) ]

2)

g

d (V&y@<
—f(p) auflésen,p =
dp

RIS
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Insert the positive solution into the second order condition:

2
4= f(p) ersetzen,p= [y-By, =2 yB—-+
)

(v-B-yo

Because the second derivate becomes positive we know that f(p) attains a minimum value at

p'ﬂ/@

given by

1 a
2 +G'X0'<y'|3-y0> 2 ]
1)

2)

[2-I3-y -x o ly-By

f< /y-B-y()) vereinfachen = y- ° o\ 0>
(v- By 0)

... or more simplified (by hand and not by Mathcad):

f(p)=2- |y By -y(1-0a)xy

In order to guarantee positive prices f(p')>0 must hold. Defining

v(1-ax, [
By,

K=

this is ensured if K <4.
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5. Some properties of the adjustment dynamics

For the proofs of the following cited claims, see Mukherij (1999).

Claim 2: K<2 [0 p g is locally stable for the process f(p).
Claim 3: For 2<K <2.5 there exists a stable 2-cycle.

Let K | denote the critical value of K where a 2" cycle is born; then K 1 =2and K 5:=25.

Using the Feigenbaum constant F o = 4.6692016091029 the value of k= lim K |

n—=> o
can be approximated by:

F const K 2 K 1
K = O K =2.636

F const 1

Claim 4: For K JA=(3.0,3.6) the map f(p) exhibits topological chaos.

Claim 5: For K = 25/9, the map f(p) exhibits ergodic chaos; in addition there exists KU A such
that f(p) exhibits ergodic chaos.

6. Numerical Explorations

To explore the behaviour of the attractors for different values of K, Mukherji (1999, p.745) fixes
the values of all parameters except the adjustment coefficient y with

Byo=l and (1-0a)x,=6
so that K=36"y. Then the iterated map takes the particular form:

f(p,K) = 1—6 K
(p, )-—P*‘(E )g

Notice, that under these parameter restrictions the value of the equilibrium price is
independent from K:

. 1
p g = f(p,K)=p auflésen,p —> <
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Choosing a numerical value for K, the iterated map is drawn in the following figure:

25
K;:? pmax::l p::O,.Ol..pmaX
Iterated Map and Equilibrium
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Given an initial value p, of the first price offer and using the K-value from above, the adjustment

process is computed for T periods .
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This adjustment process may be also presented by a cobweb plot.

Cobweb Plot of the Price Adjustment
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Observe the bifurcations by plotting the Feigenbaum diagram and the Lyapunov exponent. Use
these figures to choose K such that you obtain stable cycles of different periodicity or irregular
cycles of p.

Resolution of graph: RES =3 (1,2, ..,10)
Range of plotted values: K bottom = 1.9 K top = 3.6
P bottom = 0 P top =2
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Lyapunov exponent
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Note: Positive values of the Lyapunov exponent indicate chaotic behaviour of p!
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